Using Constrained-Disorder Principle-Based Systems to Improve the Performance of Digital Twins in Biological Systems

Author:

Sigawi Tal1,Ilan Yaron1ORCID

Affiliation:

1. Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem P.O. Box 12000, Israel

Abstract

Digital twins are computer programs that use real-world data to create simulations that predict the performance of processes, products, and systems. Digital twins may integrate artificial intelligence to improve their outputs. Models for dealing with uncertainties and noise are used to improve the accuracy of digital twins. Most currently used systems aim to reduce noise to improve their outputs. Nevertheless, biological systems are characterized by inherent variability, which is necessary for their proper function. The constrained-disorder principle defines living systems as having a disorder as part of their existence and proper operation while kept within dynamic boundaries. In the present paper, we review the role of noise in complex systems and its use in bioengineering. We describe the use of digital twins for medical applications and current methods for dealing with noise and uncertainties in modeling. The paper presents methods to improve the accuracy and effectiveness of digital twin systems by continuously implementing variability signatures while simultaneously reducing unwanted noise in their inputs and outputs. Accounting for the noisy internal and external environments of complex biological systems is necessary for the future design of improved, more accurate digital twins.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3