Neuromorphic Sensor Based on Force-Sensing Resistors

Author:

Barleanu Alexandru1,Hulea Mircea1ORCID

Affiliation:

1. Department of Computer Engineering, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania

Abstract

This work introduces a neuromorphic sensor (NS) based on force-sensing resistors (FSR) and spiking neurons for robotic systems. The proposed sensor integrates the FSR in the schematic of the spiking neuron in order to make the sensor generate spikes with a frequency that depends on the applied force. The performance of the proposed sensor is evaluated in the control of a SMA-actuated robotic finger by monitoring the force during a steady state when the finger pushes on a tweezer. For comparison purposes, we performed a similar evaluation when the SNN received input from a widely used compression load cell (CLC). The results show that the proposed FSR-based neuromorphic sensor has very good sensitivity to low forces and the function between the spiking rate and the applied force is continuous, with good variation range. However, when compared to the CLC, the response of the NS follows a logarithmic-like function with improved sensitivity for small forces. In addition, the power consumption of NS is 128 µW that is 270 times lower than that of the CLC which needs 3.5 mW to operate. These characteristics make the neuromorphic sensor with FSR suitable for bioinspired control of humanoid robotics, representing a low-power and low-cost alternative to the widely used sensors.

Funder

Faculty of Automatic Control and Computer Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3