Three-Dimensional Bioprinted Skin Microrelief and Its Role in Skin Aging

Author:

Sun Wenxuan1ORCID,Wang Bo23,Yang Tianhao1,Yin Ruixue1ORCID,Wang Feifei23,Zhang Hongbo1ORCID,Zhang Wenjun4ORCID

Affiliation:

1. School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China

2. Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650033, China

3. Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China

4. Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada

Abstract

Skin aging is a complex physiological process, in which cells and the extracellular matrix (ECM) interreact, which leads to a change in the mechanical properties of skin, which in turn affects the cell secretion and ECM deposition. The natural skin microrelief that exists from birth has rarely been taken into account when evaluating skin aging, apart from the common knowledge that microreliefs might serve as the starting point or initialize micro-wrinkles. In fact, microrelief itself also changes with aging. Does the microrelief have other, better uses? In this paper, owing to the fast-developing 3D printing technology, skin wrinkles with microrelief of different age groups were successfully manufactured using the Digital light processing (DLP) technology. The mechanical properties of skin samples with and without microrelief were tested. It was found that microrelief has a big impact on the elastic modulus of skin samples. In order to explore the role of microrelief in skin aging, the wrinkle formation was numerically analyzed. The microrelief models of different age groups were created using the modified Voronoi algorithm for the first time, which offers fast and flexible mesh formation. We found that skin microrelief plays an important role in regulating the modulus of the epidermis, which is the dominant factor in wrinkle formation. The wrinkle length and depth were also analyzed numerically for the first time, owing to the additional dimension offered by microrelief. The results showed that wrinkles are mainly caused by the modulus change of the epidermis in the aging process, and compared with the dermis, the hypodermis is irrelevant to wrinkling. Hereby, we developed a hypothesis that microrelief makes the skin adaptive to the mechanical property changes from aging by adjusting its shape and size. The native-like skin samples with microrelief might shed a light on the mechanism of wrinkling and also help with understanding the complex physiological processes associated with human skin.

Funder

Yunnan Characteristic Plant Extraction Laboratory

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3