A City Shared Bike Dispatch Approach Based on Temporal Graph Convolutional Network and Genetic Algorithm

Author:

Ma Ji12ORCID,Zheng Shenggen3,Lin Shangjing4ORCID,Cheng Yonghong2

Affiliation:

1. School of Network Security, Jinling Institute of Technology, Nanjing 211169, China

2. School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China

3. Big Data Division, Beijing Logistics Technology Development Co., Ltd., Beijing 610101, China

4. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Public transportation scheduling aims to optimize the allocation of resources, enhance efficiency, and increase passenger satisfaction, all of which are crucial for building a sustainable urban transportation system. As a complement to public transportation, bike-sharing systems provide users with a solution for the last mile of travel, compensating for the lack of flexibility in public transportation and helping to improve its utilization rate. Due to the characteristics of shared bikes, including peak usage periods in the morning and evening and significant demand fluctuations across different areas, optimizing shared bike dispatch can better meet user needs, reduce vehicle vacancy rates, and increase operating revenue. To address this issue, this article proposes a comprehensive decision-making approach for spatiotemporal demand prediction and bike dispatch optimization. For demand prediction, we design a T-GCN (Temporal Graph Convolutional Network)-based bike demand prediction model. In terms of dispatch optimization, we consider factors such as dispatch capacity, distance restrictions, and dispatch costs, and design an optimization solution based on genetic algorithms. Finally, we validate the approach using shared bike operating data and show that the T-GCN can effectively predict the short-term demand for shared bikes. Meanwhile, the optimization model based on genetic algorithms provides a complete dispatch solution, verifying the model’s effectiveness. The shared bike dispatch approach proposed in this paper combines demand prediction with resource scheduling. This scheme can also be extended to other transportation scheduling problems with uncertain demand, such as store replenishment delivery and intercity inventory dispatch.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3