A Decomposition-Based Multi-Objective Flying Foxes Optimization Algorithm and Its Applications

Author:

Zhang Chen1,Song Ziyun1,Yang Yufei1,Zhang Changsheng1ORCID,Guo Ying2

Affiliation:

1. Software College, Northeastern University, Shenyang 110169, China

2. College of Computer Science and Engineering, Ningxia Institute of Science and Technology, Shizuishan 753000, China

Abstract

The flying foxes optimization (FFO) algorithm stimulated by the strategy used by flying foxes for subsistence in heat wave environments has shown good performance in the single-objective domain. Aiming to explore the effectiveness and benefits of the subsistence strategy used by flying foxes in solving optimization challenges involving multiple objectives, this research proposes a decomposition-based multi-objective flying foxes optimization algorithm (MOEA/D-FFO). It exhibits a great population management strategy, which mainly includes the following features. (1) In order to improve the exploration effectiveness of the flying fox population, a new offspring generation mechanism is introduced to improve the efficiency of exploration of peripheral space by flying fox populations. (2) A new population updating approach is proposed to adjust the neighbor matrices to the corresponding flying fox individuals using the new offspring, with the aim of enhancing the rate of convergence in the population. Through comparison experiments with classical algorithms (MOEA/D, NSGA-II, IBEA) and cutting-edge algorithms (MOEA/D-DYTS, MOEA/D-UR), MOEA/D-FFO achieves more than 11 best results. In addition, the experimental results under different population sizes show that the proposed algorithm is highly adaptable and has good application prospects in optimization problems for engineering applications.

Funder

Ningxia Natural Science Foundation Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3