The Effect of Hindwing Trajectories on Wake–Wing Interactions in the Configuration of Two Flapping Wings in Tandem

Author:

He Xu1,Wang Chao2ORCID,Jia Pan1,Zhong Zheng1

Affiliation:

1. School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China

2. School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China

Abstract

The present investigations on tandem wing configurations primarily revolve around the effects of the spacing L and the phase difference φ between the forewing and the hindwing on aerodynamic performance. However, in nature, organisms employing biplane flight, such as dragonflies, demonstrate the ability to achieve superior aerodynamic performance by flexibly adjusting their flapping trajectories. Therefore, this study focuses on the effects of φ, as well as the trajectory of the hindwing, on aerodynamic performance. By summarizing four patterns of wake–wing interaction processes, it is indicated that φ=−90∘ and 0∘ enhances the thrust of the hindwing, while φ=90∘ and 180∘ result in reductions. Furthermore, the wake–wing interactions and shedding modes are summarized corresponding to three kinds of trajectories, including elliptical trajectories, figure-eight trajectories, and double figure-eight trajectories. The results show that the aerodynamic performance of the elliptical trajectory is similar to that of the straight trajectory, while the figure-eight trajectory with positive surging motion significantly enhances the aerodynamic performance of the hindwing. Conversely, the double-figure-eight trajectory degrades the aerodynamic performance of the hindwing.

Funder

Shenzhen Science and Technology Programme

Development and Reform Commission of Shenzhen

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3