CoDC: Accurate Learning with Noisy Labels via Disagreement and Consistency

Author:

Dong Yongfeng123ORCID,Li Jiawei123,Wang Zhen123ORCID,Jia Wenyu123

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China

2. Hebei Province Key Laboratory of Big Data Computing, Hebei University of Technology, Tianjin 300401, China

3. Hebei Engineering Research Center of Data-Driven Industrial Intelligent, Hebei University of Technology, Tianjin 300401, China

Abstract

Inspired by the biological nervous system, deep neural networks (DNNs) are able to achieve remarkable performance in various tasks. However, they struggle to handle label noise, which can poison the memorization effects of DNNs. Co-teaching-based methods are popular in learning with noisy labels. These methods cross-train two DNNs based on the small-loss criterion and employ a strategy using either “disagreement” or “consistency” to obtain the divergence of the two networks. However, these methods are sample-inefficient for generalization in noisy scenarios. In this paper, we propose CoDC, a novel Co-teaching-basedmethod for accurate learning with label noise via both Disagreement and Consistency strategies. Specifically, CoDC maintains disagreement at the feature level and consistency at the prediction level using a balanced loss function. Additionally, a weighted cross-entropy loss is proposed based on information derived from the historical training process. Moreover, the valuable knowledge involved in “large-loss” samples is further developed and utilized by assigning pseudo-labels. Comprehensive experiments were conducted on both synthetic and real-world noise and under various noise types. CoDC achieved 72.81% accuracy on the Clothing1M dataset and 76.96% (Top1) accuracy on the WebVision1.0 dataset. These superior results demonstrate the effectiveness and robustness of learning with noisy labels.

Funder

National Natural Science Foundation of China

Higher Education Science and Technology Research Project of Hebei Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3