Adaptive Skid-Steering Control Approach for Robots on Uncertain Inclined Planes with Redundant Load-Bearing Mobility

Author:

Zhang Lin1ORCID,Wang Baoyu2,Guan Enguang3ORCID,Liu Xun1ORCID,Saqib Muhammad4,Zhao Yanzheng1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

2. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

3. Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China

4. Drivedream Machinery Equipment Co., Ltd., Shanghai 200240, China

Abstract

Climbing manufacturing robots can create a revolutionary manufacturing paradigm for large and complex components, while the motion control of climbing manipulation-oriented robots (CMo-Rs) is still challenging considering anti-slippage problems. In this study, a CMo-R with full-scenery climbing capability and redundant load-bearing mobility is designed based on magnetic adsorption. A four-wheel kinematic model considering the slipping phenomenon is established. An adaptive kinematic control algorithm based on slip estimation using Lyapunov theory is designed for uncertain inclined planes. For comparison, the traditional PID-based algorithm without slip consideration is implemented as well. Numeric simulations are conducted to tackle the trajectory tracking problems for both circular and linear trajectories on the horizontal plane (HP), 50° inclined plane (50° IP), 60° inclined plane (60° IP), and vertical plane (VP). The results prove that our approach achieves better tracking accuracy. It demonstrated applicability in various climbing scenarios with uncertain inclined planes. The results of experiments also validate the feasibility, applicability, and stability of the proposed approach.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3