The Pine Cone Optimization Algorithm (PCOA)

Author:

Valikhan Anaraki Mahdi1ORCID,Farzin Saeed1ORCID

Affiliation:

1. Department of Water Engineering and Hydraulics Structures, Faculty of Civil Engineering, Semnan University, Semnan 35131-19111, Iran

Abstract

The present study introduces a novel nature-inspired optimizer called the Pine Cone Optimization algorithm (PCOA) for solving science and engineering problems. PCOA is designed based on the different mechanisms of pine tree reproduction, including pollination and pine cone dispersal by gravity and animals. It employs new and powerful operators to simulate the mentioned mechanisms. The performance of PCOA is analyzed using classic benchmark functions, CEC017 and CEC2019 as mathematical problems and CEC2006 and CEC2011 as engineering design problems. In terms of accuracy, the results show the superiority of PCOA to well-known algorithms (PSO, DE, and WOA) and new algorithms (AVOA, RW_GWO, HHO, and GBO). The results of PCOA are competitive with state-of-the-art algorithms (LSHADE and EBOwithCMAR). In terms of convergence speed and time complexity, the results of PCOA are reasonable. According to the Friedman test, PCOA’s rank is 1.68 and 9.42 percent better than EBOwithCMAR (second-best algorithm) and LSHADE (third-best algorithm), respectively. The authors recommend PCOA for science, engineering, and industrial societies for solving complex optimization problems.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3