The Creation of an Average 3D Model of the Human Cartilaginous Nasal Septum and Its Biomimetic Applications

Author:

Han Peter S.12,Punjabi Nihal13,Goese Mickey4,Inman Jared C.1

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA 92350, USA

2. Department of Head and Neck Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA

3. Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA

4. Independent Researcher

Abstract

The cartilaginous nasal septum is integral to the overall structure of the nose. Developing our an-atomic understanding of the septum will improve the planning and techniques of septal surgeries. While the basic dimensions of the septum have previously been described, the average shape in the sagittal plane has yet to be established. Furthermore, determining the average shape allows for the creation of a mean three-dimensional (3D) septum model. To better understand the average septal shape, we dissected septums from 40 fresh human cadavers. Thickness was measured across pre-defined points on each specimen. Image processing in Photoshop was used to superimpose lateral photographs of the septums to determine the average shape. The average shape was then combined with thickness data to develop a 3D model. This model may be utilized in finite elemental analyses, creating theoretical results about septal properties that are more translatable to real-world clinical practice. Our 3D septum also has numerous applications for 3D printing. Realistic models can be created for educational or surgical planning purposes. In the future, our model could also serve as the basis for 3D-printed scaffolds to aid in tissue regeneration to reconstruct septal defects. The model can be viewed at the NIH 3D model repository (3DPX ID: 020598, Title: 3D Nasal Septum).

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3