Affiliation:
1. Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA 92093, USA
Abstract
This work proposes, analyzes, designs, and validates superior topologies of UHGH converters that are capable of supporting extremely large conversion ratios up to ∼2000× and output voltage up to ∼4–12 kV for future mobile soft robots from an input voltage as low as the range of a 1-cell battery pack. Thus, the converter makes soft robots standalone systems that can be untethered and mobile. The extremely large voltage gain is enabled by a unique hybrid combination of a high-gain switched magnetic element (HGSME) and a capacitor-based voltage multiplier rectifier (CVMR) that, together, achieve small overall size, efficient operation, and output voltage regulation and shaping with simple duty-cycle modulation. With superior performance, power density, and compact size, the UHGH converters prove to be a promising candidate for future untethered soft robots.
Subject
Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology