A High-Speed Acoustic Echo Canceller Based on Grey Wolf Optimization and Particle Swarm Optimization Algorithms

Author:

Pichardo Eduardo1ORCID,Avalos Juan G.2ORCID,Sánchez Giovanny2ORCID,Vazquez Eduardo2ORCID,Toscano Linda K.2ORCID

Affiliation:

1. Tecnologico de Monterrey, School of Engineering and Sciences, Calle del Puente 222, Col. Ejidos de Huipulco Tlalpan, Ciudad de Mexico 14380, Mexico

2. Instituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de Mexico 04260, Mexico

Abstract

Currently, the use of acoustic echo cancellers (AECs) plays a crucial role in IoT applications, such as voice control appliances, hands-free telephony and intelligent voice control devices, among others. Therefore, these IoT devices are mostly controlled by voice commands. However, the performance of these devices is significantly affected by echo noise in real acoustic environments. Despite good results being achieved in terms of echo noise reductions using conventional adaptive filtering based on gradient optimization algorithms, recently, the use of bio-inspired algorithms has attracted significant attention in the science community, since these algorithms exhibit a faster convergence rate when compared with gradient optimization algorithms. To date, several authors have tried to develop high-performance AEC systems to offer high-quality and realistic sound. In this work, we present a new AEC system based on the grey wolf optimization (GWO) and particle swarm optimization (PSO) algorithms to guarantee a higher convergence speed compared with previously reported solutions. This improvement potentially allows for high tracking capabilities. This aspect has special relevance in real acoustic environments since it indicates the rate at which noise is reduced.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3