Affiliation:
1. State Key Laboratory of Mining Induced Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
2. College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
Abstract
In general, the design of a safe and rational laneway support scheme signifies a crucial prerequisite for ensuring the security and efficiency of mining exploitation in mines. Nevertheless, the conventional empirical support system for mining laneways faces challenges in assessing the rationality of support methods, which can compromise the safety and reliability of the laneways. To address this issue, the safety factor was incorporated into research on laneway support, and a safety evaluation method for laneway support in line with the safety factor was established. In light of the data from a specific iron mine laneway in central China, the CRITIC method was employed to preprocess the sample data. Going one step further, a Bayesian algorithm was utilized to optimize the hyperparameters of the CatBoost model, followed by proposing a prediction model based on the BO-CatBoost model for evaluating laneway safety factors of plain shotcrete support. Furthermore, the performance indexes, such as the root mean square error (RMSE), the mean absolute error (MAE), the correlation coefficient (R2), the variance accounts for (VAF), and the a-20 index, were determined to examine the predictive performance of each proposed model. In contrast to the other models, the BO-CatBoost model demonstrated the optimal predictive output item for safety factors with the lowest RMSE and MAE, the largest R2 and VAF, and an appropriate a-20 index value of 0.5688, 0.4074, 0.9553, 95.25%, and 0.9167 in the test set, respectively. Therefore, the BO-CatBoost model was proven to be the most appropriate machine learning method that can more accurately predict the safety factor, which will provide a novel approach for optimizing laneway support design and laneway safety evaluation.
Funder
State Key Laboratory of Mining Induced Response and Disaster Prevention and Control in Deep Coal Mines
National Natural Science Foundation of China
Reference35 articles.
1. Research on support technology and zoning and grading support system for complex fractured soft rock tunnels;Zhang;Min. Res. Dev.,2021
2. Challenges and Development Prospects of Ultra-Long and Ultra-Deep Mountain Tunnels;Zhu;Engineering,2019
3. Research and application of difficulty classification for thick mud roof roadway support;Ma;Chin. J. Saf. Sci.,2017
4. Coupling Instability Mechanism and Joint Control Technology of Soft-Rock Roadway with a Buried Depth of 1336 m;Zhan;Rock Mech. Rock Eng.,2020
5. Optimization of rock drilling chambers and mining access support in deep mining areas;Tang;Min. Res. Dev.,2020