An Improved Binary Walrus Optimizer with Golden Sine Disturbance and Population Regeneration Mechanism to Solve Feature Selection Problems

Author:

Geng Yanyu12,Li Ying12,Deng Chunyan12

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China

Abstract

Feature selection (FS) is a significant dimensionality reduction technique in machine learning and data mining that is adept at managing high-dimensional data efficiently and enhancing model performance. Metaheuristic algorithms have become one of the most promising solutions in FS owing to their powerful search capabilities as well as their performance. In this paper, the novel improved binary walrus optimizer (WO) algorithm utilizing the golden sine strategy, elite opposition-based learning (EOBL), and population regeneration mechanism (BGEPWO) is proposed for FS. First, the population is initialized using an iterative chaotic map with infinite collapses (ICMIC) chaotic map to improve the diversity. Second, a safe signal is obtained by introducing an adaptive operator to enhance the stability of the WO and optimize the trade-off between exploration and exploitation of the algorithm. Third, BGEPWO innovatively designs a population regeneration mechanism to continuously eliminate hopeless individuals and generate new promising ones, which keeps the population moving toward the optimal solution and accelerates the convergence process. Fourth, EOBL is used to guide the escape behavior of the walrus to expand the search range. Finally, the golden sine strategy is utilized for perturbing the population in the late iteration to improve the algorithm’s capacity to evade local optima. The BGEPWO algorithm underwent evaluation on 21 datasets of different sizes and was compared with the BWO algorithm and 10 other representative optimization algorithms. The experimental results demonstrate that BGEPWO outperforms these competing algorithms in terms of fitness value, number of selected features, and F1-score in most datasets. The proposed algorithm achieves higher accuracy, better feature reduction ability, and stronger convergence by increasing population diversity, continuously balancing exploration and exploitation processes and effectively escaping local optimal traps.

Funder

Natural Science Foundation of Jilin Province of China

Publisher

MDPI AG

Reference87 articles.

1. Feature selection techniques in the context of big data: Taxonomy and analysis;Abdulwahab;Appl. Intell.,2022

2. On some aspects of minimum redundancy maximum relevance feature selection;Bugata;Inf. Sci.,2020

3. A conditional-weight joint relevance metric for feature relevancy term;Zhang;Eng. Appl. Artif. Intell.,2021

4. Improved Salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection;Tubishat;Expert Syst. Appl.,2020

5. Feature dimensionality reduction: A review;Jia;Complex Intell. Syst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3