Load Balancing Based on Firefly and Ant Colony Optimization Algorithms for Parallel Computing

Author:

Li Yong,Li Jinxing,Sun Yu,Li HaishengORCID

Abstract

With the wide application of computational fluid dynamics in various fields and the continuous growth of the complexity of the problem and the scale of the computational grid, large-scale parallel computing came into being and became an indispensable means to solve this problem. In the numerical simulation of multi-block grids, the mapping strategy from grid block to processor is an important factor affecting the efficiency of load balancing and communication overhead. The multi-level graph partitioning algorithm is an important algorithm that introduces graph network dynamic programming to solve the load-balancing problem. This paper proposed a firefly-ant compound optimization (FaCO) algorithm for the weighted fusion of two optimization rules of the firefly and ant colony algorithm. For the graph, results after multi-level graph partitioning are transformed into a traveling salesman problem (TSP). This algorithm is used to optimize the load distribution of the solution, and finally, the rough graph segmentation is projected to obtain the most original segmentation optimization results. Although firefly algorithm (FA) and ant colony optimization (ACO), as swarm intelligence algorithms, are widely used to solve TSP problems, for the problems for which swarm intelligence algorithms easily fall into local optimization and low search accuracy, the improvement of the FaCO algorithm adjusts the weight of iterative location selection and updates the location. Experimental results on publicly available datasets such as the Oliver30 dataset and the eil51 dataset demonstrated the effectiveness of the FaCO algorithm. It is also significantly better than the commonly used firefly algorithm and other algorithms in terms of the search results and efficiency and achieves better results in optimizing the load-balancing problem of parallel computing.

Funder

Key R & D Plan of National Science and Technology Program Application Center

Beijing Natural Science Foundation and Fengtai Rail Transit Frontier Research Joint Fund

Scientific Research Program of Beijing Municipal Education Commission

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference36 articles.

1. Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review

2. A novel task load balancing algorithm in the large-scale CFD with multi-zone structured grids;Tang;Comput. Eng. Sci.,2014

3. Load Balancing for Computational Fluid Dynamics Calculations;Streng,1996

4. A Tool for Partitioning Structured Multiblock Meshes for Parallel Computational Mechanics

5. A Multi-Level Algorithm for Partitioning Graphs;Hendrickson;Comput. Eng. Sci.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3