Combined Traction Force–Atomic Force Microscopy Measurements of Neuronal Cells

Author:

Kumarasinghe UdathariORCID,Fox Lucian N.ORCID,Staii Cristian

Abstract

In the course of the development of the nervous system, neuronal cells extend (grow) axons, which navigate over distances of the order of many cell diameters to reach target dendrites from other neurons and establish neuronal circuits. Some of the central challenges in biophysics today are to develop a quantitative model of axonal growth, which includes the interactions between the neurons and their growth environment, and to describe the complex architecture of neuronal networks in terms of a small number of physical variables. To address these challenges, researchers need new experimental techniques for measuring biomechanical interactions with very high force and spatiotemporal resolutions. Here we report a unique experimental approach that integrates three different high-resolution techniques on the same platform—traction force microscopy (TFM), atomic force microscopy (AFM) and fluorescence microscopy (FM)—to measure biomechanical properties of cortical neurons. To our knowledge, this is the first literature report of combined TFM/AFM/FM measurements performed for any type of cell. Using this combination of powerful experimental techniques, we perform high-resolution measurements of the elastic modulus for cortical neurons and relate these values with traction forces exerted by the cells on the growth substrate (poly acrylamide hydrogels, or PAA, coated with poly D-lysine). We obtain values for the traction stresses exerted by the cortical neurons in the range 30–70 Pa, and traction forces in the range 5–11 nN. Our results demonstrate that neuronal cells stiffen when axons exert forces on the PAA substrate, and that neuronal growth is governed by a contact guidance mechanism, in which axons are guided by external mechanical cues. This work provides new insights for bioengineering novel biomimetic platforms that closely model neuronal growth in vivo, and it has significant impact for creating neuroprosthetic interfaces and devices for neuronal growth and regeneration.

Funder

Tufts University Springboard and Summer Faculty Fellowship Awards

National Science Foundation award

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3