Color-Patterns to Architecture Conversion through Conditional Generative Adversarial Networks

Author:

Navarro-Mateu DiegoORCID,Carrasco Oriol,Cortes Nieves PedroORCID

Abstract

Often an apparent complex reality can be extrapolated into certain patterns that in turn are evidenced in natural behaviors (whether biological, chemical or physical). The Architecture Design field has manifested these patterns as a conscious (inspired designs) or unconscious manner (emerging organizations). If such patterns exist and can be recognized, can we therefore use them as genotypic DNA? Can we be capable of generating a phenotypic architecture that is manifestly more complex than the original pattern? Recent developments in the field of Evo-Devo around gene regulators patterns or the explosive development of Machine Learning tools could be combined to set the basis for developing new, disruptive workflows for both design and analysis. This study will test the feasibility of using conditional Generative Adversarial Networks (cGANs) as a tool for coding architecture into color pattern-based images and translating them into 2D architectural representations. A series of scaled tests are performed to check the feasibility of the hypothesis. A second test assesses the flexibility of the trained neural networks against cases outside the database.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference84 articles.

1. Towards Principled Methods for Training Generative Adversarial Networkshttps://arxiv.org/abs/1701.04862

2. Making Designs Come Alive: Using Physically Based Modeling Techniques in Space Layout Planning;Arvin,1999

3. Evolutionary computation: comments on the history and current state

4. Marr Revisited: 2D-3D Alignment via Surface Normal Prediction;Bansal,2016

5. Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3