Long Bone Defect Filling with Bioactive Degradable 3D-Implant: Experimental Study

Author:

Popkov Arnold1,Kononovich Natalia1,Dubinenko Gleb2ORCID,Gorbach Elena1,Shastov Alexander1,Tverdokhlebov Sergei2ORCID,Popkov Dmitry1ORCID

Affiliation:

1. Ilizarov National Medical Research Center for Traumatology and Orthopedics, Kurgan 640014, Russia

2. School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

Abstract

Previously, 3D-printed bone grafts made of titanium alloy with bioactive coating has shown great potential for the restoration of bone defects. Implanted into a medullary canal titanium graft with cellular structure demonstrated stimulation of the reparative osteogenesis and successful osseointegration of the graft into a single bone-implant block. The purpose of this study was to investigate osseointegration of a 3D-printed degradable polymeric implant with cellular structure as preclinical testing of a new technique for bone defect restoration. During an experimental study in sheep, a 20 mm-long segmental tibial defect was filled with an original cylindrical implant with cellular structure made of polycaprolactone coated with hydroxyapatite. X-ray radiographs demonstrated reparative bone regeneration from the periosteum lying on the periphery of cylindrical implant to its center in a week after the surgery. Cellular structure of the implant was fully filled with newly-formed bone tissue on the 4th week after the surgery. The bone tissue regeneration from the proximal and distal bone fragments was evident on 3rd week. This provides insight into the use of bioactive degradable implants for the restoration of segmental bone defects. Degradable implant with bioactive coating implanted into a long bone segmental defect provides stimulation of reparative osteogenesis and osseointegration into the single implant-bone block.

Funder

the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3