Multistrategy-Boosted Carnivorous Plant Algorithm: Performance Analysis and Application in Engineering Designs

Author:

Peng Min1,Jing Wenlong2,Yang Jianwei3,Hu Gang24ORCID

Affiliation:

1. School of Art and Design, Xi’an University of Technology, Xi’an 710054, China

2. Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, China

3. Design Art College, Xijing University, Xi’an 710123, China

4. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

Many pivotal and knotty engineering problems in practical applications boil down to optimization problems, which are difficult to resolve using traditional mathematical optimization methods. Metaheuristics are efficient algorithms for solving complex optimization problems while keeping computational costs reasonable. The carnivorous plant algorithm (CPA) is a newly proposed metaheuristic algorithm, inspired by its foraging strategies of attraction, capture, digestion, and reproduction. However, the CPA is not without its shortcomings. In this paper, an enhanced multistrategy carnivorous plant algorithm called the UCDCPA is developed. In the proposed framework, a good point set, Cauchy mutation, and differential evolution are introduced to increase the algorithm’s calculation precision and convergence speed as well as heighten the diversity of the population and avoid becoming trapped in local optima. The superiority and practicability of the UCDCPA are illustrated by comparing its experimental results with several algorithms against the CEC2014 and CEC2017 benchmark functions, and five engineering designs. Additionally, the results of the experiment are analyzed again from a statistical point of view using the Friedman and Wilcoxon rank-sum tests. The findings show that these introduced strategies provide some improvements in the performance of the CPA, and the accuracy and stability of the optimization results provided by the proposed UCDCPA are competitive against all algorithms. To conclude, the proposed UCDCPA offers a good alternative to solving optimization issues.

Funder

Scientific Research Program

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3