Study of the Heat Transfer Performance of Laminated Paper Honeycomb Panels

Author:

Li Yinsheng,Yang Jing,Chen JinxiangORCID,Yin Jian

Abstract

To apply functional honeycomb panels (FHPs) in actual engineering projects, the heat transfer performance and intrinsic heat transfer mechanism of laminated honeycomb panels (LHPs, total thickness of 60 mm) with different structural parameters were investigated in this study by a heat flow meter. The results showed that (1) the equivalent thermal conductivity λequ of the LHP was almost independent of the cell size, when it consisted of a small single-layer thickness. Thus, LHP panels with a single-layer thickness of 15–20 mm are recommended. (2) A heat transfer model of LHPs was developed, and it was concluded that the heat transfer performance of LHPs depends greatly on the performance of their honeycomb core. Then, an equation was derived for the steady state temperature distribution of the honeycomb core. (3) The contribution of each heat transfer method to the total heat flux of the LHP was calculated using the theoretical equation. According to the theoretical results, the intrinsic heat transfer mechanism affecting the heat transfer performance of LHPs was revealed. The results of this study laid the foundation for the application of LHPs in building envelopes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference27 articles.

1. Chapter 3—Transparent Insulation Materials;Granqvist;Materials Science for Solar Energy Conversion Systems,1991

2. Zagainov, G.I., and Lozino-Lozinsky, G.E. (1996). Composite Materials in Aerospace Design, Springer Science & Business Media.

3. Swann, R.T. (1961). Analysis of Effective Thermal Conductivities of Honeycomb-Core and Corrugated-Core Sandwich Panels.

4. Coupled radiative and conductive thermal transfers across transparent honeycomb insulation materials;Arulanantham;Appl. Therm. Eng.,1996

5. Convective heat transfer across transparent honeycomb insulation materials;Arulanantham;Energy Convers. Manag.,1994

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3