An Improved Grey Wolf Optimizer and Its Application in Robot Path Planning

Author:

Ou Yun1,Yin Pengfei2,Mo Liping3ORCID

Affiliation:

1. School of Communication and Electronic Engineering, Jishou University, Jishou 416000, China

2. Academic Affairs Office, Jishou University, Jishou 416000, China

3. College of Computer Science and Engineering, Jishou University, Jishou 416000, China

Abstract

This paper discusses a hybrid grey wolf optimizer utilizing a clone selection algorithm (pGWO-CSA) to overcome the disadvantages of a standard grey wolf optimizer (GWO), such as slow convergence speed, low accuracy in the single-peak function, and easily falling into local optimum in the multi-peak function and complex problems. The modifications of the proposed pGWO-CSA could be classified into the following three aspects. Firstly, a nonlinear function is used instead of a linear function for adjusting the iterative attenuation of the convergence factor to balance exploitation and exploration automatically. Then, an optimal α wolf is designed which will not be affected by the wolves β and δ with poor fitness in the position updating strategy; the second-best β wolf is designed, which will be affected by the low fitness value of the δ wolf. Finally, the cloning and super-mutation of the clonal selection algorithm (CSA) are introduced into GWO to enhance the ability to jump out of the local optimum. In the experimental part, 15 benchmark functions are selected to perform the function optimization tasks to reveal the performance of pGWO-CSA further. Due to the statistical analysis of the obtained experimental data, the pGWO-CSA is superior to these classical swarm intelligence algorithms, GWO, and related variants. Furthermore, in order to verify the applicability of the algorithm, it was applied to the robot path-planning problem and obtained excellent results.

Funder

National Natural Science Foundation of China

Research Foundation of Education Bureau of Hunan Province, China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3