Analysis of Structure and Function of Ladybird Leg and Subsequent Design and Fabrication of a Simplified Leg Structure for Robotic Applications

Author:

Mercer Christopher1,Hosoda Naoe1

Affiliation:

1. Smart Interface Group, Research Center for Structural Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan

Abstract

Many insects are able to walk vertically or upside down on both hard and soft surfaces. In beetles such as the ladybird (Coccinella septempunctata), intermolecular forces between tarsal setae on the footpads of the insects make this movement possible. In prior work, adhesion structures made from polydimethylsiloxane (PDMS) that mimic the action of the tarsal setae have been developed. It is proposed that these adhesion structures could be attached to a simplified version of the leg of a ladybird and used in practical applications. For example, the leg structures could potentially be employed in small surveillance drones to enable attachment to surfaces during flights, in order to preserve battery power. Alternatively, the structures could be used in small robotic devices to enable walking on steeply inclined surfaces. In this program of work, the morphology and movement of the leg of a ladybird were closely studied using a 3D X-ray microscope and a high-speed microscope. The positions of the tendons that facilitated movement were identified. From this knowledge, a simplified leg structure using pin-joints was designed and then fabricated using 3-D printing. The PDMS adhesion structures were then attached to the leg structure. The tendons in the actual insect leg were replicated using thread. Typical detachment forces of about 4 N indicated that the simplified leg structure was, in principle, more than capable of supporting the weight of a small device and then detach successfully. Attachment/detachment movement operations were performed using a linear actuator and controlled remotely. Therefore, proof of concept has been demonstrated for the use of such a simplified ladybird leg structure for the attachment/detachment of small robotic devices to horizontal, inclined, or vertical surfaces.

Funder

Innovative Science and Technology Initiative for Security

Publisher

MDPI AG

Reference30 articles.

1. Gorb, S.N. (2001). Attachment Devices of Insect Cuticle, Kluwer Academic Publishers.

2. Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces;Stork;J. Exp. Biol.,1980

3. Multi-scale tarsal adhesion kinematics of freely-walking dock beetles;Gernay;J. R. Soc. Interface,2017

4. Evidence for intermolecular forces involved in ladybird beetle tarsal setae adhesion;Hosoda;Sci. Rep.,2021

5. Design of biomimetic fibrillar interfaces: 1. Making contact;Glassmaker;J. R. Soc. Interface,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3