Research on Microgrid Optimal Dispatching Based on a Multi-Strategy Optimization of Slime Mould Algorithm

Author:

Zhang Yi1ORCID,Zhou Yangkun1

Affiliation:

1. College of Electrical and Computer Science, Jilin Jianzhu University, Changchun 130000, China

Abstract

In order to cope with the problems of energy shortage and environmental pollution, carbon emissions need to be reduced and so the structure of the power grid is constantly being optimized. Traditional centralized power networks are not as capable of controlling and distributing non-renewable energy as distributed power grids. Therefore, the optimal dispatch of microgrids faces increasing challenges. This paper proposes a multi-strategy fusion slime mould algorithm (MFSMA) to tackle the microgrid optimal dispatching problem. Traditional swarm intelligence algorithms suffer from slow convergence, low efficiency, and the risk of falling into local optima. The MFSMA employs reverse learning to enlarge the search space and avoid local optima to overcome these challenges. Furthermore, adaptive parameters ensure a thorough search during the algorithm iterations. The focus is on exploring the solution space in the early stages of the algorithm, while convergence is accelerated during the later stages to ensure efficiency and accuracy. The salp swarm algorithm’s search mode is also incorporated to expedite convergence. MFSMA and other algorithms are compared on the benchmark functions, and the test showed that the effect of MFSMA is better. Simulation results demonstrate the superior performance of the MFSMA for function optimization, particularly in solving the 24 h microgrid optimal scheduling problem. This problem considers multiple energy sources such as wind turbines, photovoltaics, and energy storage. A microgrid model based on the MFSMA is established in this paper. Simulation of the proposed algorithm reveals its ability to enhance energy utilization efficiency, reduce total network costs, and minimize environmental pollution. The contributions of this paper are as follows: (1) A comprehensive microgrid dispatch model is proposed. (2) Environmental costs, operation and maintenance costs are taken into consideration. (3) Two modes of grid-tied operation and island operation are considered. (4) This paper uses a multi-strategy optimized slime mould algorithm to optimize scheduling, and the algorithm has excellent results.

Funder

Science and Technology Development Project of Jilin Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3