Affiliation:
1. School of Information, University of California, Berkeley, CA 94720, USA
Abstract
In numerous scientific disciplines and practical applications, addressing optimization challenges is a common imperative. Nature-inspired optimization algorithms represent a highly valuable and pragmatic approach to tackling these complexities. This paper introduces Dendritic Growth Optimization (DGO), a novel algorithm inspired by natural branching patterns. DGO offers a novel solution for intricate optimization problems and demonstrates its efficiency in exploring diverse solution spaces. The algorithm has been extensively tested with a suite of machine learning algorithms, deep learning algorithms, and metaheuristic algorithms, and the results, both before and after optimization, unequivocally support the proposed algorithm’s feasibility, effectiveness, and generalizability. Through empirical validation using established datasets like diabetes and breast cancer, the algorithm consistently enhances model performance across various domains. Beyond its working and experimental analysis, DGO’s wide-ranging applications in machine learning, logistics, and engineering for solving real-world problems have been highlighted. The study also considers the challenges and practical implications of implementing DGO in multiple scenarios. As optimization remains crucial in research and industry, DGO emerges as a promising avenue for innovation and problem solving.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献