An Energy-Saving and Efficient Deployment Strategy for Heterogeneous Wireless Sensor Networks Based on Improved Seagull Optimization Algorithm

Author:

Cao Li1ORCID,Wang Zihui1,Wang Zihao1,Wang Xiangkun1,Yue Yinggao12ORCID

Affiliation:

1. School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China

2. Intelligent Information Systems Institute, Wenzhou University, Wenzhou 325035, China

Abstract

The Internet of Things technology provides convenience for data acquisition in environmental monitoring and environmental protection and can also avoid invasive damage caused by traditional data acquisition methods. An adaptive cooperative optimization seagull algorithm for optimal coverage of heterogeneous sensor networks is proposed in order to address the issue of coverage blind zone and coverage redundancy in the initial random deployment of heterogeneous sensor network nodes in the sensing layer of the Internet of Things. Calculate the individual fitness value according to the total number of nodes, coverage radius, and area edge length, select the initial population, and aim at the maximum coverage rate to determine the position of the current optimal solution. After continuous updating, when the number of iterations is maximum, the global output is output. The optimal solution is the node’s mobile position. A scaling factor is introduced to dynamically adjust the relative displacement between the current seagull individual and the optimal individual, which improves the exploration and development ability of the algorithm. Finally, the optimal seagull individual position is fine-tuned by random opposite learning, leading the whole seagull to move to the correct position in the given search space, improving the ability to jump out of the local optimum, and further increasing the optimization accuracy. The experimental simulation results demonstrate that, compared with the coverage and network energy consumption of the PSO algorithm, the GWO algorithm, and the basic SOA algorithm, the coverage of the PSO-SOA algorithm proposed in this paper is 6.1%, 4.8%, and 1.2% higher than them, respectively, and the energy consumption of the network is reduced by 86.8%, 68.4%, and 52.6%, respectively. The optimal deployment method based on the adaptive cooperative optimization seagull algorithm can improve the network coverage and reduce the network cost, and effectively avoid the coverage blind zone and coverage redundancy in the network.

Funder

Natural Science Foundation of Zhejiang Province

Wenzhou basic scientific research project

Industrial Science and Technology Project of Yueqing City

Wenzhou Association for Science and Technology

major scientific and technological innovation projects of Wenzhou Science and Technology Plan

school level scientific research projects of Wenzhou University of Technology

general scientific research projects of the Provincial Department of Education

teaching reform research project of Wenzhou University of Technology

Wenzhou intelligent image processing and analysis key laboratory construction project

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3