Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction

Author:

Chen Xingwei1,Li Han1,Xu Ziteng1,Lu Lijun1,Pan Zhifeng1,Mao Yanchao1ORCID

Affiliation:

1. Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

Abstract

Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.

Funder

China Postdoctoral Science Foundation

Foundation for Outstanding Young Teachers in Universities of Henan Province

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3