Abstract
Minimally invasive endovascular embolization is a widely used clinical technique used for the occlusion of blood vessels to treat various diseases. Different occlusive agents ranging from gelatin foam to synthetic polymers such as poly(vinyl alcohol) (PVA) have been commercially used for embolization. However, these agents have some drawbacks, such as undesired toxicity and unintended and uncontrolled occlusion. To overcome these issues, several polymer-based embolic systems are under investigation including biocompatible and biodegradable microspheres, gelling liquid embolic with controlled occlusive features, and trackable microspheres with enhanced safety profiles. This review aims to summarize recent advances in current and emerging polymeric materials as embolization agents with varying material architectures. Furthermore, this review also explores the potential of combining injectable embolic agents and cell therapy to achieve more effective embolization with the promise of outstanding results in treating various devastating diseases. Finally, limitations and challenges in developing next-generation multifunctional embolic agents are discussed to promote advancement in this emerging field.
Funder
National Heart Lung and Blood Institute
Subject
Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献