Effect of Composition Strategies on Mycelium-Based Composites Flexural Behaviour

Author:

Rigobello AdrienORCID,Colmo Claudia,Ayres PhilORCID

Abstract

Mycelium-based composites (MBC) are a promising class of relatively novel materials that leverage mycelium colonisation of substrates. Being predicated on biological growth, rather than extraction based material sourcing from the geosphere, MBC are garnering attention as potential alternatives for certain fossil-based materials. In addition, their protocols of production point towards more sustainable and circular practices. MBC remains an emerging practice in both production and analysis of materials, particularly with regard to standardisation and repeatability of protocols. Here, we show a series of flexural tests following ASTM D1037, reporting flexural modulus and flexural modulus of rupture. To increase the mechanical proprieties, we contribute with an approach that follows the composition strategy of reinforcement by considering fibre topology and implementing structural components to the substrate. We explore four models that consist of a control group, the integration of inner hessian, hessian jacketing and rattan fibres. Apart from the inner hessian group, the introduction of rattan fibres and hessian jacketing led to significant increases in both strength and stiffness (α = 0.05). The mean of the flexural modulus for the most performative rattan series (1.34 GPa) is still close to three times lower than that of Medium-Density Fibreboard, and approximately 16 times lower in modulus of rupture. A future investigation could focus on developing a hybrid strategy of composition and densification so as to improve aggregate interlocking and resulting strength and stiffness.

Funder

European Union

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3