Intelligent Learning-Based Methods for Determining the Ideal Team Size in Agile Practices

Author:

Olivares Rodrigo1ORCID,Noel Rene1ORCID,Guzmán Sebastián M.1ORCID,Miranda Diego1ORCID,Munoz Roberto1ORCID

Affiliation:

1. Escuela de Ingeniería Informática, Universidad de Valparaíso, Valparaíso 2362905, Chile

Abstract

One of the significant challenges in scaling agile software development is organizing software development teams to ensure effective communication among members while equipping them with the capabilities to deliver business value independently. A formal approach to address this challenge involves modeling it as an optimization problem: given a professional staff, how can they be organized to optimize the number of communication channels, considering both intra-team and inter-team channels? In this article, we propose applying a set of bio-inspired algorithms to solve this problem. We introduce an enhancement that incorporates ensemble learning into the resolution process to achieve nearly optimal results. Ensemble learning integrates multiple machine-learning strategies with diverse characteristics to boost optimizer performance. Furthermore, the studied metaheuristics offer an excellent opportunity to explore their linear convergence, contingent on the exploration and exploitation phases. The results produce more precise definitions for team sizes, aligning with industry standards. Our approach demonstrates superior performance compared to the traditional versions of these algorithms.

Publisher

MDPI AG

Reference89 articles.

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., and Thomas, D. (2001). The Agile Manifesto, Agile Alliance.

2. Beck, K. (2000). Extreme Programming Explained: Embrace Change, Addison-Wesley Professional.

3. Forsgren, N., Humbpotifle, J., and Kim, G. (2018). Accelerate: The Science of Lean Software and DevOps Building and Scaling High Performing Technology Organizations, IT Revolution Press.

4. Scaled Agile, Inc. (2021, October 04). SAFe 5 for Lean Enterprises. Available online: https://www.scaledagileframework.com/.

5. Larman, C., and Vodde, B. (2016). Large-Scale Scrum: More with LeSS, Addison-Wesley Professional.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3