Stress-Adaptive Stiffening Structures Inspired by Diatoms: A Parametric Solution for Lightweight Surfaces

Author:

Linnemann Selina K.1,Friedrichs Lars1,Niebuhr Nils M.1

Affiliation:

1. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany

Abstract

The intricate and highly complex morphologies of diatom frustules have long captured the attention of biomimetic researchers, initiating innovation in engineering solutions. This study investigates the potential of diatom-inspired surface stiffeners to determine whether the introduced innovative strategy is a viable alternative for addressing engineering challenges demanding enhanced stiffness. This interdisciplinary study focuses on the computer-aided generation of stress-adaptive lightweight structures aimed at optimizing bending stiffness. Through a comprehensive microscopical analysis, morphological characteristics of diatom frustules were identified and abstracted to be applied to a reference model using computer-aided methods and simulated to analyze their mechanical behavior under load-bearing conditions. Afterwards, the models are compared against a conventional engineering approach. The most promising biomimetic approach is successfully automated, extending its applicability to non-planar surfaces and diverse boundary conditions. It yields notable improvement in bending stiffness, which manifests in a decrease of displacement by approximately 93% in comparison to the reference model with an equivalent total mass. Nonetheless, for the specific load case considered, the engineering approach yields the least displacement. Although certain applications may favor conventional methods, the presented approach holds promise for scenarios subjected to varying stresses, necessitating lightweight and robust solutions.

Funder

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, department of “Bio-inspired Lightweight Design and Functional Morphology”

Open Access Publication Funds of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3