Cholesterol-Enriched Hybrid Lipid Bilayer Formation on Inverse Phosphocholine Lipid-Functionalized Titanium Oxide Surfaces

Author:

Sut Tun Naw12ORCID,Jackman Joshua A.2ORCID,Cho Nam-Joon1ORCID

Affiliation:

1. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Hybrid lipid bilayers (HLBs) are rugged biomimetic cell membrane interfaces that can form on inorganic surfaces and be designed to contain biologically important components like cholesterol. In general, HLBs are formed by depositing phospholipids on top of a hydrophobic self-assembled monolayer (SAM) composed of one-tail amphiphiles, while recent findings have shown that two-tail amphiphiles such as inverse phosphocholine (CP) lipids can have advantageous properties to promote zwitterionic HLB formation. Herein, we explored the feasibility of fabricating cholesterol-enriched HLBs on CP SAM-functionalized TiO2 surfaces with the solvent exchange and vesicle fusion methods. All stages of the HLB fabrication process were tracked by quartz crystal microbalance-dissipation (QCM-D) measurements and revealed important differences in fabrication outcome depending on the chosen method. With the solvent exchange method, it was possible to fabricate HLBs with well-controlled cholesterol fractions up to ~65 mol% in the upper leaflet as confirmed by a methyl-β-cyclodextrin (MβCD) extraction assay. In marked contrast, the vesicle fusion method was only effective at forming HLBs from precursor vesicles containing up to ~35 mol% cholesterol, but this performance was still superior to past results on hydrophilic SiO2. We discuss the contributing factors to the different efficiencies of the two methods as well as the general utility of two-tail CP SAMs as favorable interfaces to incorporate cholesterol into HLBs. Accordingly, our findings support that the solvent exchange method is a versatile tool to fabricate cholesterol-enriched HLBs on CP SAM-functionalized TiO2 surfaces.

Funder

Ministry of Education (MOE) in Singapore

National Research Foundation of Korea

Korean government

Ministry of Education

SKKU Global Research Platform Research Fund, Sungkyunkwan University

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3