Vein–Membrane Interaction in Cambering of Flapping Insect Wings

Author:

Ishihara Daisuke1ORCID,Onishi Minato1,Sugikawa Kaede1

Affiliation:

1. Department of Intelligent and Control Systems, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan

Abstract

It is still unclear how elastic deformation of flapping insect wings caused by the aerodynamic pressure results in their significant cambering. In this study, we present that a vein–membrane interaction (VMI) can clarify this mechanical process. In order to investigate the VMI, we propose a numerical method that consists of (a) a shape simplification model wing that consists of a few beams and a rectangular shell structure as the structural essence of flapping insect wings for the VMI, and (b) a monolithic solution procedure for strongly coupled beam and shell structures with large deformation and large rotation to analyze the shape simplification model wing. We incorporate data from actual insects into the proposed numerical method for the VMI. In the numerical analysis, we demonstrate that the model wing can generate a camber equivalent to that of the actual insects. Hence, the VMI will be a mechanical basis of the cambering of flapping insect wings. Furthermore, we present the mechanical roles of the veins in cambering. The intermediate veins increase the out-of-plane deflection of the wing membrane due to the aerodynamic pressure in the central area of the wing, while they decrease it in the vicinity of the trailing edge. As a result, these veins create the significant camber. The torsional flexibility of the leading-edge veins increases the magnitude of cambering.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3