Underactuated Humanoid Peeling Approach for Pickled Mustard Tuber Based on Metamorphic Constraints

Author:

Wan Haochuan1,Chen Lei2,Xiao Jiayu1,Chen Nana1ORCID,Yin Hankun3,Zhang Lin12ORCID

Affiliation:

1. School of Robotics Engineering, Yangtze Normal University, Chongqing 408100, China

2. School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China

3. School of Intelligent Manufacturing Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China

Abstract

Pickled mustard tuber (PMT), also known as Brassica juncea var. tumida, is a conical tuberous vegetable with a scaly upper part and a coarse fiber skin covering the lower part. Due to its highly distorted and complex heterogeneous fiber network structure, traditional manual labor is still used for peeling and removing fibers from pickled mustard tuber, as there is currently no effective, fully automated method or equipment available. In this study, we designed an underactuated humanoid pickled mustard tuber peeling robot based on variable configuration constraints that emulate the human “insert-clamp-tear” process via probabilistic statistical design. Based on actual pickled mustard tuber morphological cluster analysis and statistical features, we constructed three different types of pickled mustard tuber peeling tool spectral profiles and analyzed the modular mechanical properties of three different tool configurations to optimize the variable configuration constraint effect and improve the robot’s end effector trajectory. Finally, an ADAMS virtual prototype model of the pickled mustard tuber peeling robot was established, and simulation analysis of the “insert-clamp-tear” process was performed based on the three pickled mustard tuber statistical classification selection. The results showed that the pickled mustard tuber peeling robot had a meat loss rate of no more than 15% for each corresponding category of pickled mustard tuber, a theoretical peeling rate of up to 15 pieces per minute, and an average residual rate of only about 2% for old fibers. Based on reasonable meat loss, the efficiency of peeling was greatly improved, which laid the theoretical foundation for fully automated pickled mustard tuber peeling.

Funder

National Natural Science Foundation of China

National Natural Science Foundation of Chongqing

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3