Abstract
In many disciplines, professionals are interested in folding patterns for their packing and shape changing capabilities. Many insects have folded wings fitting to their body morphology that can unfold to fly, support their weight and withstand external forces. This paper focuses on the main characteristics emerging from folding patterns inspired and adapted from both insect wings and Miura-ori patterns, along with the actuation mechanism. Pneumatic actuators, similar to the venations on insect wings, are used to unfold these patterns. Depending on one vein’s placement, its inflation can unfold models with many creases. While a single vein cannot fold the model back, a snapping behavior, observed in some folding patterns, could be used to trigger the folding mechanism of a model. By presenting the characteristics of each folding pattern studied in this work, one could come forth with an application and choose the most efficient folding patterns based on the most suitable characteristics for this application. These folding patterns can then be optimized to address specific requirements by adapting their different parameters.
Funder
The University of Akron Faculty Research Fellowship 2018
Subject
Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献