Augmented Aircraft Performance with the Use of Morphing Technology for a Turboprop Regional Aircraft Wing

Author:

Moens

Abstract

This article presents some application of the morphing technology for aerodynamic performance improvement of turboprop regional aircraft. It summarizes the results obtained in the framework of the Clean Sky 2 AIRGREEN2 program for the development and application of dedicated morphing devices for take-off and landing, and their uses in off design conditions. The wing of the reference aircraft configuration considers Natural Laminar Flow (NLF) characteristics. A deformable leading edge morphing device (“droop nose”) and a multi-functional segmented flap system have been considered. For the droop nose, the use of the deformable compliant structure was considered, as it allows a “clean” leading edge when not used, which is mandatory to keep natural laminar flow (NLF) properties at cruise. The use of a segmented flap makes it possible to avoid external flap track fairings, which will lead to performance improvement at cruise. An integrated tracking mechanism is used to set the flap at its take-off optimum setting, and, then, morphing is applied in order to obtain a high-performance level for landing. Lastly, some performance improvements can be obtained in climb conditions by using the last segment of the flap system to modify the load distribution on the wing in order to recover some extended laminar flow on the wing upper surface.

Funder

Clean Sky 2

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Reference33 articles.

1. Picture: Design of a Flying Machine (Public Domain)https://commons.wikimedia.org/wiki/File:Leonardo_Design_for_a_Flying_Machine,_c._1488.jpg

2. Musée des Arts et Métiers, Paris. (Picture by Roby, CC BY-SA 2.0 be)https://commons.wikimedia.org/w/index.php?curid=220593

3. Picture by Joao Luiz Musa; Marcelo Breda Mourao, Ricardo Tilklan, Public Domainhttps://commons.wikimedia.org/w/index.php?curid=9845344

4. Three F111 at different swept wing configurations—Picture by Jason Baker (Australia), CC-BY-2.0https://c ommons.wikimedia.org/wiki/File:Three_F-111s_with_different_wing_configurations.jpg

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3