Design of 3D-Printed Electronic Fiber Optic Sensor to Detect Rhodamine B Reagent: An Initiation to Potential Virus Detection

Author:

Guo NingyuanORCID,Liu Jingwen,He Qing,Zhou RongyanORCID,Yuan HaoboORCID

Abstract

A fluorescence device based on ultraviolet light is proposed in this paper, which currently stands at the design stage with the eventual aim to potentially detect virus/antibody fluorescence reactions. The designed device is proposed to have the characteristics of high reflectivity, low power consumption, wide spectrum of light source, and proper silver coating. For fabrication and raising product quality, 3D printing technology and a sputtering test will be used. In this connection, this paper firstly introduces the design sources; then, the ideas of inventing fluorescence detection devices based on ultraviolet light, followed by the data analysis as well as discussing the results of computer simulations. The design process, materials, methods, and experiments are demonstrated following the reality work procedure. Instead of directly using a virus or antibodies for the experiment, at the current design stage, we focus on using this device to detect the rhodamine B reagent. Experiment shows that this reagent can be successfully detected. With this achievement, we logically believe that such type of an ultraviolet optical sensor, with further development and testing, may have the possible value to detect a single virus such as COVID-19, as well as other viruses or small molecules. Though there is long way to go to achieve such a goal, future works experimenting with the detection device on real virus or antibodies can take place more efficiently with a good foundation.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3