Modeling the Energy Consumption of R600a Gas in a Refrigeration System with New Explainable Artificial Intelligence Methods Based on Hybrid Optimization

Author:

Akyol Sinem1ORCID,Das Mehmet2ORCID,Alatas Bilal1ORCID

Affiliation:

1. Software Engineering Department, Engineering Faculty, Firat University, Elazig 23279, Turkey

2. Mechatronics Engineering Department, Engineering Faculty, Firat University, Elazig 23279, Turkey

Abstract

Refrigerant gases, an essential cooling system component, are used in different processes according to their thermophysical properties and energy consumption values. The low global warming potential and energy consumption values of refrigerant gases are primarily preferred in terms of use. Recently, studies on modeling properties such as compressor energy consumption, efficiency coefficient, exergy, and thermophysical properties of refrigerants in refrigeration systems with artificial intelligence methods has become increasingly common. In this study, a hybrid-optimization-based artificial intelligence classification method is applied for the first time to produce explainable, interpretable, and transparent models of compressor energy consumption in a vapor compression refrigeration system operating with R600a refrigerant gas. This methodological innovation obtains models that determine the energy consumption values of R600a gas according to the operating parameters. From these models, the operating conditions with the lowest energy consumption are automatically revealed. The innovative artificial intelligence method applied for the energy consumption value determines the system’s energy consumption according to the operating temperatures and pressures of the evaporator and condenser unit. When the obtained energy consumption model results were compared with the experimental results, it was seen that it had an accuracy of 84.4%. From this explainable artificial intelligence method, which is applied for the first time in the field of refrigerant gas, the most suitable operating conditions that can be achieved based on the minimum, medium, and maximum energy consumption ranges of different refrigerant gases can be determined.

Funder

Scientific Research Projects Office of Tokat Gazi-Osmanpaşa University

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3