CBMC: A Biomimetic Approach for Control of a 7-Degree of Freedom Robotic Arm

Author:

Li Qingkai1ORCID,Pang Yanbo1,Wang Yushi1,Han Xinyu1ORCID,Li Qing1ORCID,Zhao Mingguo12ORCID

Affiliation:

1. Department of Automation, Tsinghua University, Beijing 100084, China

2. Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China

Abstract

Many approaches inspired by brain science have been proposed for robotic control, specifically targeting situations where knowledge of the dynamic model is unavailable. This is crucial because dynamic model inaccuracies and variations can occur during the robot’s operation. In this paper, inspired by the central nervous system (CNS), we present a CNS-based Biomimetic Motor Control (CBMC) approach consisting of four modules. The first module consists of a cerebellum-like spiking neural network that employs spiking timing-dependent plasticity to learn the dynamics mechanisms and adjust the synapses connecting the spiking neurons. The second module constructed using an artificial neural network, mimicking the regulation ability of the cerebral cortex to the cerebellum in the CNS, learns by reinforcement learning to supervise the cerebellum module with instructive input. The third and last modules are the cerebral sensory module and the spinal cord module, which deal with sensory input and provide modulation to torque commands, respectively. To validate our method, CBMC was applied to the trajectory tracking control of a 7-DoF robotic arm in simulation. Finally, experiments are conducted on the robotic arm using various payloads, and the results of these experiments clearly demonstrate the effectiveness of the proposed methodology.

Funder

STI 2030—Major Projects

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3