Frictional Properties of Biomimetic Micro-Hexagonal-Textured Surfaces Interacting with Soft Counterfaces under Dry and Wet Conditions

Author:

Qatmeera Zain Eldin1,Bajjaly Agnes1,Kasem Haytam1

Affiliation:

1. Department of Mechanical Engineering, Azrieli College of Engineering, Jerusalem 9103501, Israel

Abstract

Biomimetic micro-hexagonal-textured surfaces have sparked interest for their application in fields that demand high friction and adhesion, such as micro-robotics and biomedicine. Despite extensive research conducted on this specific microstructure, its friction behavior against soft counterfaces remains a topic that has not been fully investigated yet. This study examines how micro-hexagon textures behave when they come into contact with engineered and biological materials like gelatin and chicken skin in dry and wet conditions. The results show clearly that under dry contact conditions, flat surfaces generate higher friction compared to hexagon micropattern surfaces. Under wet conditions, hexagon micropattern surfaces generate higher friction compared to flat surfaces. In wet conditions specifically, the static coefficient of friction is up to 13 times greater than that of a flat specimen against glass, up to 11 times greater against gelatin, and up to 6 times greater against chicken skin. For the dynamic coefficient of friction, the patterned surface demonstrates a maximum increase by a factor of 28 against glass, 11 against gelatin, and 5 against chicken skin. These results further develop our knowledge of these hexagon micropattern surfaces and pave the way for their utilization in future technological advancements in which soft and wet counterfaces are to be considered, such as in biomedical applications that can benefit from increased friction in wet conditions for better control and stability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3