Two New Bio-Inspired Particle Swarm Optimisation Algorithms for Single-Objective Continuous Variable Problems Based on Eavesdropping and Altruistic Animal Behaviours

Author:

Varna Fevzi Tugrul1ORCID,Husbands Phil1ORCID

Affiliation:

1. AI Group, Department of Informatics, University of Sussex, Brighton BN1 9RH, UK

Abstract

This paper presents two novel bio-inspired particle swarm optimisation (PSO) variants, namely biased eavesdropping PSO (BEPSO) and altruistic heterogeneous PSO (AHPSO). These algorithms are inspired by types of group behaviour found in nature that have not previously been exploited in search algorithms. The primary search behaviour of the BEPSO algorithm is inspired by eavesdropping behaviour observed in nature coupled with a cognitive bias mechanism that enables particles to make decisions on cooperation. The second algorithm, AHPSO, conceptualises particles in the swarm as energy-driven agents with bio-inspired altruistic behaviour, which allows for the formation of lending–borrowing relationships. The mechanisms underlying these algorithms provide new approaches to maintaining swarm diversity, which contributes to the prevention of premature convergence. The new algorithms were tested on the 30, 50 and 100-dimensional CEC’13, CEC’14 and CEC’17 test suites and various constrained real-world optimisation problems, as well as against 13 well-known PSO variants, the CEC competition winner, differential evolution algorithm L-SHADE and the recent bio-inspired I-CPA metaheuristic. The experimental results show that both the BEPSO and AHPSO algorithms provide very competitive performance on the unconstrained test suites and the constrained real-world problems. On the CEC13 test suite, across all dimensions, both BEPSO and AHPSO performed statistically significantly better than 10 of the 15 comparator algorithms, while none of the remaining 5 algorithms performed significantly better than either BEPSO or AHPSO. On the CEC17 test suite, on the 50D and 100D problems, both BEPSO and AHPSO performed statistically significantly better than 11 of the 15 comparator algorithms, while none of the remaining 4 algorithms performed significantly better than either BEPSO or AHPSO. On the constrained problem set, in terms of mean rank across 30 runs on all problems, BEPSO was first, and AHPSO was third.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3