Foundational Engineering of Artificial Blood Vessels’ Biomechanics: The Impact of Wavy Geometric Designs

Author:

Yilmaz Galip1ORCID

Affiliation:

1. Electronics and Automation Department, Bayburt University, Bayburt 69000, Turkey

Abstract

The design of wavy structures and their mechanical implications on artificial blood vessels (ABVs) have been insufficiently studied in the existing literature. This research aims to explore the influence of various wavy geometric designs on the mechanical properties of ABVs and to establish a foundational framework for advancing and applying these designs. Computer-aided design (CAD) and finite element method (FEM) simulations, in conjunction with physical sample testing, were utilized. A geometric model incorporating concave and convex curves was developed and analyzed with a symbolic mathematical tool. Subsequently, a total of ten CAD models were subjected to increasing internal pressures using a FEM simulation to evaluate the expansion of internal areas. Additionally, physical experiments were conducted further to investigate the expansion of ABV samples under pressure. The results demonstrated that increased wave numbers significantly enhance the flexibility of ABVs. Samples with 22 waves exhibited a 45% larger area under 24 kPa pressure than those with simple circles. However, the increased number of waves also led to undesirable high-pressure gradients at elevated pressures. Furthermore, a strong correlation was observed between the experimental outcomes and the simulation results, with a notably low error margin, ranging from 19.88% to 3.84%. Incorporating wavy designs into ABVs can effectively increase both vessel flexibility and the internal area under pressure. Finally, it was found that expansion depending on the wave number can be efficiently modeled with a simple linear equation, which could be utilized in future designs.

Publisher

MDPI AG

Reference38 articles.

1. Epidemiology of cardiovascular disease in Europe;Townsend;Nat. Rev. Cardiol.,2022

2. Analyzing the impact of feature selection on the accuracy of heart disease prediction;Nag;Health Anal.,2022

3. Novel Biocompatible Ultrananocrystalline Diamond Coating Technology for a New Generation of Medical Implants, Devices, and Scaffolds for Developmental Biology;Auciello;Biomater. Med. Appl.,2018

4. Bioprinting of artificial blood vessels: Current approaches towards a demanding goal;Hoch;Eur. J. Cardio-Thorac. Surg.,2014

5. New developments in bone-conduction hearing implants: A review;Reinfeldt;Med. Devices Evid. Res.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3