Development and Testing of Advanced Cork Composite Sandwiches for Energy-Absorbing Structures

Author:

Kaczyński Paweł,Ptak Mariusz,A. O. Fernandes Fábio,Chybowski Leszek,Wilhelm Johannes,J. Alves de Sousa RicardoORCID

Abstract

Cork is a sustainable material with remarkable properties. In addition to its main application as wine stoppers, it has also been employed as a sound and thermal insulator in facades, building roofs, aeronautical applications, and, more recently, in impact energy absorption systems. In its natural form, cork is mainly used in wine stopper manufacturing, but for other applications, cork compounds are usually employed, which makes it possible to manufacture complex geometries with nearly isotropic behavior. In this work, an attempt was made to merge the desirable properties of two different cork materials (agglomerated and expanded black) into cork composite sandwich structures. These structures were tested according to impact conditions typically experienced by energy-absorbing liners used in personal safety devices. Additionally, the performance dependency on the working temperature was analyzed. The sole black, expanded cork (EC159) and agglomerated cork (AC199A and AC216) were tested in 500 J impacts. It was found that black cork was characterized by superior thermal stability, while expanded cork allowed absorbing high energies. In the second stage, the composites consisting of both tested materials were tested in 100 J impact scenarios. The combination of two materials of different properties enabled reduction of the peak force exerted on a helmet user’s head during the impact by about 10% compared to agglomerated specimens. Additionally, it was proved that there was no influence of the glue used to join different cork types.

Funder

Narodowe Centrum Badań i Rozwoju

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3