Comparison of Radial Ply and Cross Ply Tire in Terms of Achieved Rolling Resistance and Soil Compaction in a Soil Test Channel

Author:

Helexa Milan1,Krilek Jozef1ORCID,Kováč Ján1ORCID,Kuvik Tomáš1,Mancel Vladimír1ORCID,Abrahám Rudolf2,Majdan Radoslav2

Affiliation:

1. Department of Environmental and Forestry Machinery, Faculty of Technology, Technical University in Zvolen, Študentská 26, 960 01 Zvolen, Slovakia

2. Institute of Agricultural Engineering, Transport and Bioenergetics, Faculty of Engineering, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia

Abstract

Many literature sources state that radial ply tires achieve lower rolling resistance values than cross ply tires. From a certain point of view, radial ply tires are gentler on the ground than cross ply tires. The effort was therefore to experimentally verify this statement for two radial ply and cross ply tires similar in shape and size. The work deals with the diagnostics of rolling resistance levels achieved by radial ply and cross ply tires on selected forest soil under the laboratory conditions of a soil test channel. BKT 210/95 R16 Agrimax RT 855 and Özka 7.50-16 8PR KNK 50 were chosen as radial ply and cross ply tires, respectively, and had approximately the same dimensions. The soil in the soil test channel can be characterized as a loamy sand with an average moisture content of 30% and an initial bulk density of 1445.07 kg·m−3. Another monitored parameter was the diagnostics of changes in soil density caused by tire movement in order to assess the degree of soil compaction. From the results of the work, it follows that there is no statistically significant difference between radial ply and cross ply tires in terms of the achieved levels of rolling resistance on the soil. The observed tires also caused intense compaction of the soil in the soil test channel, especially at higher tire pressures and higher vertical loads. The analysis of the results also shows that changes in tire pressure in both tires cause more energy loss and soil compaction than changes in the vertical load.

Funder

Operational Programme Integrated Infrastructure

Ministry of Education, Research, Development and Youth of the Slovak Republic

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3