Stability of Breathers for a Periodic Klein–Gordon Equation

Author:

Chirilus-Bruckner Martina1ORCID,Cuevas-Maraver Jesús23ORCID,Kevrekidis Panayotis G.4ORCID

Affiliation:

1. Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

2. Grupo de Física No Lineal, Departamento de Física Aplicada I, Universidad de Sevilla, Escuela Politécnica Superior, C/Virgen de África, 7, 41011 Sevilla, Spain

3. Instituto de Matemáticas de la Universidad de Sevilla (IMUS), Edificio Celestino Mutis. Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

4. Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA

Abstract

The existence of breather-type solutions, i.e., solutions that are periodic in time and exponentially localized in space, is a very unusual feature for continuum, nonlinear wave-type equations. Following an earlier work establishing a theorem for the existence of such structures, we bring to bear a combination of analysis-inspired numerical tools that permit the construction of such waveforms to a desired numerical accuracy. In addition, this enables us to explore their numerical stability. Our computations show that for the spatially heterogeneous form of the ϕ4 model considered herein, the breather solutions are generically unstable. Their instability seems to generically favor the motion of the relevant structures. We expect that these results may inspire further studies towards the identification of stable continuous breathers in spatially heterogeneous, continuum nonlinear wave equation models.

Funder

EU

U.S. National Science Foundation

Publisher

MDPI AG

Reference28 articles.

1. Dynamics of solitons in nearly integrable systems;Kivshar;Rev. Mod. Phys.,1989

2. Cuevas-Maraver, J., Kevrekidis, P.G., and Williams, F.L. (2014). The Sine-Gordon Model and its Applications: From Pendula and Josephson Junctions to Gravity and High Energy Physics, Springer.

3. Dauxois, T., and Peyrard, M. (2006). Physics of Solitons, Cambridge University Press.

4. Dodd, R.K., Eilbeck, J.C., Gibbon, J.D., and Morris, H.C. (1982). Solitons and Nonlinear Wave Equations, Academic Press.

5. Nonlinear-Evolution Equations of Physical Significance;Ablowitz;Phys. Rev. Lett.,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3