Abstract
In recent years, the research of combining a knowledge graph with recommendation systems has caused widespread concern. By studying the interconnections in knowledge graphs, potential connections between users and items can be discovered, which provides abundant and complementary information for recommendation of items. However, most existing studies have not effectively established the relation between entities and users. Therefore, the recommendation results may be affected by some unrelated entities. In this paper, we propose a neighborhood aggregation collaborative filtering (NACF) based on knowledge graph. It uses the knowledge graph to spread and extract the user’s potential interest, and iteratively injects them into the user features with attentional deviation. We conducted a large number of experiments on three public datasets; we verifyied that NACF is ahead of the most advanced models in top-k recommendation and click-through rate (CTR) prediction.
Funder
Natural Science Foundation China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献