Neighborhood Aggregation Collaborative Filtering Based on Knowledge Graph

Author:

Zhang DehaiORCID,Liu Linan,Wei Qi,Yang YunORCID,Yang Po,Liu Qing

Abstract

In recent years, the research of combining a knowledge graph with recommendation systems has caused widespread concern. By studying the interconnections in knowledge graphs, potential connections between users and items can be discovered, which provides abundant and complementary information for recommendation of items. However, most existing studies have not effectively established the relation between entities and users. Therefore, the recommendation results may be affected by some unrelated entities. In this paper, we propose a neighborhood aggregation collaborative filtering (NACF) based on knowledge graph. It uses the knowledge graph to spread and extract the user’s potential interest, and iteratively injects them into the user features with attentional deviation. We conducted a large number of experiments on three public datasets; we verifyied that NACF is ahead of the most advanced models in top-k recommendation and click-through rate (CTR) prediction.

Funder

Natural Science Foundation China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Knowledge graph-based recommendation with knowledge noise reduction and data augmentation;Applied Intelligence;2024-08-13

2. A Review of Knowledge Graph Recommendation Systems Based on VOSviewer;2024 9th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA);2024-04-25

3. A Recommendation Method for Power Staff Skills and Knowledge Considering User's Personalized Rating;Proceedings of the 2023 7th International Conference on High Performance Compilation, Computing and Communications;2023-06-17

4. Survey of Optimization Algorithms in Modern Neural Networks;Mathematics;2023-05-26

5. Deep Interest Network Based on Knowledge Graph Embedding;Applied Sciences;2022-12-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3