Assessment of Performance Enhancement Potential of a High-Temperature Parabolic Trough Collector System Combining the Optimized IR-Reflectors

Author:

Wang Qiliang,Yang Hongxing,Pei Gang,Yang Honglun,Cao Jingyu,Hu MingkeORCID

Abstract

Heat collecting elements (HCEs) are the core components in the parabolic trough collector (PTC) system because photothermal conversion of the whole system occurs in the HCEs. However, considerable heat loss from the HCEs at high operating temperature exerts seriously negative impact on the photothermal conversion efficiency of the PTC system and subsequent application systems. To effectively reduce the heat loss and thus enhance the overall performance of the PTC system, in our previous work, we proposed three kinds of novel HCEs by partially depositing different IR-reflector coatings on the inner and outer surfaces of the glass envelope. The infrared (IR)-reflector of actual transparent conductive oxide (TCO) film, IR-reflector with a fixed cutoff wavelength of 2.5 μm, and the IR-reflector with optimal cutoff wavelength showed extremely effective roles in the reduction of heat loss in HCEs. In this paper, the comprehensive energy and exergy performances of these three novel HCEs in a real 72 m small-scale PTC system are further investigated by the mathematical models established. Additionally, the comparisons among overall performances of the proposed HCEs under different direct solar irradiances are also carried out. The results show that the simulated data yields good consistence with the experimental results, and that all three of the novel HCEs achieve superior overall performance compared with the conventional HCEs. The PTC system installing the novel HCEs with the IR-reflector coating which possesses the optimal cutoff wavelength has the best energetic and exergetic efficiencies, which are significantly improved by 25.2% and 28.1% compared with the conventional HCEs at the solar irradiance of 800 W/m2 and inlet temperature of 580 °C. Moreover, the proposed novel HCEs have a much superior performance at lower solar irradiance. The performance-enhanced PTC system will play a significantly positive role in the performance improvement of the heating and cooling of buildings in the future.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3