Machining Accuracy Enhancement of a Machine Tool by a Cooling Channel Design for a Built-in Spindle

Author:

Li Kun-Ying,Luo Win-Jet,Wei Shih-Jie

Abstract

This study presents a multiphysics simulation analysis that was performed for the cooling channel of a built-in spindle. The design of experiments (DOE) method was employed to optimize the dimension of the cooling channel, and a practical machining experiment was performed to validate the effect of the design. In terms of the temperature, pressure drop, thermal deformation, manufacturing cost, and initial cost considerations, the paralleling type cooling channel of the front bearing and the helical type cooling channel of the motor were adopted in the study. After the optimal design of the cooling channel was applied, the bearing temperature was reduced by a maximum decrease of 6.7 °C, the spindle deformation decreased from 53.8 μm to 30.9 μm, and the required operational time for attaining the steady state of the machine tool was shortened from 185.3 min to 132.6 min. For the machining validation, the spindle with the optimal cooling channel design was employed for vehicle part machining, the flatness of the finished workpiece was increased by 61.3%, and the surface roughness (Ra) was increased by 52%. According to the findings for the optimal cooling channel, when the spindle cooling efficiency is increased by the optimal cooling channel design, the thermal deformation and warm-up period can be reduced effectively, and the machining precision can be enhanced. This method is an efficient way to increase the accuracy of a machine tool.

Funder

Industrial Technology Research Institute

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3