Abstract
The micro reacting pipe with 3D internal structure, which is a micromixer with the shape of the pipe, has shown great advantages regarding mass transfer and heat transfer. Since the fluid flow is mostly laminar at the micro-scale, which is unfavorable to the diffusion of reactants, it is important to understand the influence of the geometry of the microchannel on the fluid flow for improving the diffusion of the reactants and mixing efficiency. On the other hand, it is a convenient method to manufacture a micro reacting pipe in one piece through metal additive manufacturing without many post-processing processes. In this paper, a basis for the design of a micromixer model was provided by combining the metal additive manufacturing process constraints with computational fluid dynamics (CFD) simulation. The effects of microchannel structures on fluid flow and mixing efficiency were studied by CFD simulation whose results showed that the internal micro-structure had a significantly positive effect on the mixing efficiency. Based on the simulation results, the splitting-collision mechanism was discussed, and several design rules were obtained. Two different materials were selected for manufacturing with the laser powder bed fusion (L-PBF) technology. After applying pressure tests to evaluate the quality of the formed parts and comparing the corrosion-resistance of the two materials, one material was picked out for the industrial application. Additionally, the chemical experiment was conducted to evaluate the accuracy of the simulation. The experimental results showed that the mixing efficiency of the micro reacting pipe increased by 56.6%, and the optimal determining size of the micro reacting pipe was 0.2 mm. The study can be widely used in the design and manufacture of a micromixer, which can improve efficiency and reacting stability in this field.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Fundamental Research Funds for the Central Universities
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献