Deformation of Air Bubbles Near a Plunging Jet Using a Machine Learning Approach

Author:

Di Nunno FabioORCID,Alves Pereira FranciscoORCID,de Marinis GiovanniORCID,Di Felice FabioORCID,Gargano Rudy,Miozzi MassimoORCID,Granata FrancescoORCID

Abstract

The deformation of air bubbles in a liquid flow field is of relevant interest in phenomena such as cavitation, air entrainment, and foaming. In complex situations, this problem cannot be addressed theoretically, while the accuracy of an approach based on Computational Fluid Dynamics (CFD) is often unsatisfactory. In this study, a novel approach to the problem is proposed, based on the combined use of a shadowgraph technique, to obtain experimental data, and some machine learning algorithms to build prediction models. Three models were developed to predict the equivalent diameter and aspect ratio of air bubbles moving near a plunging jet. The models were different in terms of their input variables. Five variants of each model were built, changing the implemented machine learning algorithm: Additive Regression of Decision Stump, Bagging, K-Star, Random Forest and Support Vector Regression. In relation to the prediction of the equivalent diameter, two models provided satisfactory predictions, assessed on the basis of four different evaluation metrics. The third model was slightly less accurate in all its variants. Regarding the forecast of the bubble’s aspect ratio, the difference in the input variables of the prediction models shows a greater influence on the accuracy of the results. However, the proposed approach proves to be promising to address complex problems in the study of multi-phase flows.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3