Effects of Internal Force Redistribution on the Limit States of Continuous Beams with GFRP Reinforcement

Author:

Baša Nikola,Kopitović Vuković Nataša,Ulićević Mladen,Muhadinović Mladen

Abstract

Fiber-reinforced polymers (FRP) are commonly used as internal reinforcement in RC structures in aggressive environments. The design of concrete elements reinforced with FRP bars is usually ruled by serviceability criteria rather than the ultimate limit state. Six continuous concrete beams over two spans with longitudinal and transverse glass FRP (GFRP) reinforcement were investigated until failure to estimate the effects of different reinforcement arrangements on the limit states of continuous beams. The ratio of longitudinal reinforcement between the midspan and middle support sections (i.e., the design moment redistribution) and the type of GFRP reinforcement were the main parameters. The experimental results were compared to prediction models and other code formulations under serviceability and ultimate limit states. The bond-dependent coefficient kb was investigated to assess adhesion conditions for GFRP reinforcement and concrete. The results showed that moment redistribution in continuous beams with GFRP reinforcement happens with slippage between the reinforcement and concrete in the middle support without the load capacity being reduced. A modified model was suggested for better deflection prediction of continuous beams reinforced with GFRP bars. Based on deformability factors, the tested continuous beams, although containing GFRP reinforcement that has brittle behavior, showed a certain kind of ductile behavior.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference38 articles.

1. Numerical investigation on structural glass beams with GFRP-embedded rods, including effects of pre-stress

2. Basalt FRP rods for reinforcement and repair of timber

3. An experimental study of the flexural behaviour of GFRP RC beams and comparison with prediction models

4. Flexural behaviour of concrete beams reinforced with glass fiber-reinforced polymer GFRP bars;Toutanji;ACI Struct. J.,2000

5. Effective moment of inertia for glass fiber-reinforced polymer-reinforced concrete beams;Yost;ACI Struct. J.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3